为了利用同一场景的视频框架中的高时间相关性,使用基于块的运动估计和补偿技术从已经编码的参考帧中预测了当前帧。尽管这种方法可以有效利用移动对象的翻译运动,但它容易受到其他类型的仿射运动和对象遮挡/除含量的影响。最近,深度学习已被用来模拟人类姿势的高级结构,以从短视频中的特定动作中进行,然后通过使用生成的对抗网络(GAN)来预测姿势,从而在未来的时间内生成虚拟框架。因此,建模人姿势的高级结构能够通过预测人类的行为并确定其轨迹来利用语义相关性。视频监视应用程序将受益,因为可以通过估算人类姿势轨迹并通过语义相关性产生未来的框架来压缩存储的大监视数据。本文通过从已经编码的框架中对人姿势进行建模并在当前时间使用生成的框架来探讨一种新的视频编码方式。预计所提出的方法可以通过预测包含具有较低残差的移动对象的块来克服传统向后引用框架的局限性。实验结果表明,提出的方法平均可以实现高达2.83 dB PSNR增益和25.93 \%比特率的节省,用于高运动视频序列
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
We provide a brief, and inevitably incomplete overview of the use of Machine Learning (ML) and other AI methods in astronomy, astrophysics, and cosmology. Astronomy entered the big data era with the first digital sky surveys in the early 1990s and the resulting Terascale data sets, which required automating of many data processing and analysis tasks, for example the star-galaxy separation, with billions of feature vectors in hundreds of dimensions. The exponential data growth continued, with the rise of synoptic sky surveys and the Time Domain Astronomy, with the resulting Petascale data streams and the need for a real-time processing, classification, and decision making. A broad variety of classification and clustering methods have been applied for these tasks, and this remains a very active area of research. Over the past decade we have seen an exponential growth of the astronomical literature involving a variety of ML/AI applications of an ever increasing complexity and sophistication. ML and AI are now a standard part of the astronomical toolkit. As the data complexity continues to increase, we anticipate further advances leading towards a collaborative human-AI discovery.
translated by 谷歌翻译
基于优化的元学习旨在学习初始化,以便在一些梯度更新中可以学习新的看不见的任务。模型不可知的元学习(MAML)是一种包括两个优化回路的基准算法。内部循环致力于学习一项新任务,并且外循环导致元定义。但是,Anil(几乎没有内部环)算法表明,功能重用是MAML快速学习的替代方法。因此,元定义阶段使MAML用于特征重用,并消除了快速学习的需求。与Anil相反,我们假设可能需要在元测试期间学习新功能。从非相似分布中进行的一项新的看不见的任务将需要快速学习,并重用现有功能。在本文中,我们调用神经网络的宽度深度二元性,其中,我们通过添加额外的计算单元(ACU)来增加网络的宽度。 ACUS可以在元测试任务中学习新的原子特征,而相关的增加宽度有助于转发通行证中的信息传播。新学习的功能与最后一层的现有功能相结合,用于元学习。实验结果表明,我们提出的MAC方法的表现优于现有的非相似任务分布的Anil算法,约为13%(5次任务设置)
translated by 谷歌翻译
开发有效的自动分类器将真实来源与工件分开,对于宽场光学调查的瞬时随访至关重要。在图像差异过程之后,从减法伪像的瞬态检测鉴定是此类分类器的关键步骤,称为真实 - 博格斯分类问题。我们将自我监督的机器学习模型,深入的自组织地图(DESOM)应用于这个“真实的模拟”分类问题。 DESOM结合了自动编码器和一个自组织图以执行聚类,以根据其维度降低的表示形式来区分真实和虚假的检测。我们使用32x32归一化检测缩略图作为底部的输入。我们展示了不同的模型训练方法,并发现我们的最佳DESOM分类器显示出6.6%的检测率,假阳性率为1.5%。 Desom提供了一种更细微的方法来微调决策边界,以确定与其他类型的分类器(例如在神经网络或决策树上构建的)结合使用时可能进行的实际检测。我们还讨论了DESOM及其局限性的其他潜在用法。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
Majorana示威者是一项领先的实验,寻找具有高纯净锗探测器(HPGE)的中性s中性双β衰变。机器学习提供了一种最大化这些检测器提供的信息量的新方法,但是与传统分析相比,数据驱动的性质使其不可解释。一项可解释性研究揭示了机器的决策逻辑,使我们能够从机器中学习以反馈传统分析。在这项工作中,我们介绍了Majorana演示者数据的第一个机器学习分析。这也是对任何锗探测器实验的第一个可解释的机器学习分析。训练了两个梯度增强的决策树模型,以从数据中学习,并进行了基于游戏理论的模型可解释性研究,以了解分类功率的起源。通过从数据中学习,该分析识别重建参数之间的相关性,以进一步增强背景拒绝性能。通过从机器中学习,该分析揭示了新的背景类别对相互利用的标准Majorana分析的重要性。该模型与下一代锗探测器实验(如传说)高度兼容,因为它可以同时在大量探测器上进行训练。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
量子技术需要准备和操纵纠缠多片状状态的方法。但是,确定给定量子状态是否纠缠还是可分离的问题通常是NP硬性问题,甚至很难检测到给定量子状态的纠缠崩溃的任务。在这项工作中,我们开发了一种使用机器学习技术来揭示纠缠崩溃的方法,该技术被称为“混乱学习”。我们考虑了一个量子状态的家庭,该量子已被参数化,因此在该家族中有一个临界值将单个临界价值分为单独和纠缠。我们证明了“通过混乱的学习”计划使我们能够确定关键价值。具体而言,我们研究了两分,两Qutrit和两分点纠缠状态的方法的性能。此外,我们研究了混淆方案框架中局部去极化和广义振幅阻尼通道的特性。在我们的方法和设置特殊轨迹的参数化中,我们获得了量子通道的纠缠破裂的“相图”,该通道指示纠缠(可分离)状态和纠缠破裂区域的区域。然后,我们扩展了使用“通过混乱的学习”方案来识别任意给定状态是纠缠还是可分离的方式。我们表明,开发的方法为各种状态提供了正确的答案,包括具有积极部分转置的纠缠状态。我们还提出了该方法的更实用的版本,该版本适合研究嘈杂的中间量子设备中的纠缠崩溃。我们使用可用的基于云的IBM量子处理器演示其性能。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译